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Abstract. The valence-band and mnduction-band densities of slates (DOSS) of vigonal Te have 
been invesbgafed using ultraviolet photoemission and inverse-photwmisim spectmscopy. We 
find s l r u c ~ s  at -0.8, -1.7, -3.6. -4.6, -10.6 and -12.8 eV. and a f  1.4, 2.1, 2.7. 4.7, 6.1 
and 9.5 eV with respect to the valence-band maximum. Relative energy positions of suuchlres 
within the valence bands and those within the conduction bands are in good agreement with 
those in the calculated DOSS on the basis of the empirical pseudopotential theory. Separation 
between the theoretical valence-band and conduction-band DOSS is, however. narrower by about 
1 eV than the experimental results. The Te 4d core-yield spectrum shows intense and sharp 
doublets at the 4d are-absorption Lhreshold. These Svuc~res are assigned to th spin-xhil 
doublee of the Te 4d mre excitons with a comparatively long lifetime and a fairly localized 
nature, 

1. Introduction 

A crystal of trigonal Te consists of helical chains arranged in a hexagonal array. The unit 
cell is composed of three atoms of a helix as shown in figure 1 111. Two of the four 5p 
electrons per atom are used in forming covalent bonds with the two nearest neighbours in 
the chain, while the other two form lonepair orbitals pointing toward neighbouring chains. 
The interaction between atoms in neighbouring chains is comparatively weak and often 
believed to be of van der Waals character. 

The density of states (53s) of valence bands of trigonal Te has been investigated by 
means of ultraviolet and x-ray photoemission spectroscopy [2-6] (UPS and u s ) .  The UPS 
[2,3] and XPS [2,4-6] spectra exhibited a prominent peak at -2 eV, two peaks between 
-3 and -6 eV and also two broad peaks between -8 and -16 eV with respect to the 
valence-band maximum (VBM). These peaks were attributed to the 5p lone-pair, 5p-like 
bonding and 5s states, respectively. Weak conduction-band structures were also reported 
at 5.4, 5.8 and 6.1 eV above the VBM from experiments on the excitation-photon-energy 
(3-12 eV) dependences of energy distribution c w e s  and their second energy derivatives 
[3]. The Te 4d core-absorption spectrum has been discussed in conjunction with the W S  
of conduction bands, taking into account the final-state interaction [7]. 

The band-structure calculations for trigonal Te [%I71 have been performed on the basis 
of tight-binding [8,15], Koninga-Kohn-Rostker [lo], modified augmented plane-wave [ 111, 
pseudopotential [9,12-151, orthogonalized planewave [ 161 and vector-chaxge-density [I71 
methods. The valenceband DOS accomplished by the empirical pseudopotential calculation 
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Figure 1. The crystal smcm of trigonal Te. The unit cell wosists of three atoms of one helix. 
a. b and c represent the q s t a l  axes. 

[I51 was in an excellent agreement with the experimental photoemission spectrum. Little 
comparison, however, was made between the theory and experiment on the conduction-band 
DOS, because the direct experimental information was fairly limited. 

In this paper, we present valence-band and conduction-band spectra of trigonal Te 
measured by means of ultraviolet photoemission and inverse-photoemission spectroscopy 
(UPS and IWS). The UPS spectra are fully consistent with the earlier results [241. The lpes 
spectrum reveals, for the first time, a measure of the conduction-band DOS, in particular. 
the energy positions and widths of the 5p-like antibonding bands and higher-lying 5d-like 
bands. In addition, we show that in situ nleasurements of the UPS and IPES spectra realize a 
connection of these two spectra at the Fermi level in the band gap and provide a whole DOS 
spectrum [NI. This makes it possible to discuss relative energy positions of experimental 
DOS peaks derived from the 5s. 5p and 5d states in comparison with the calculated DOS. 
We also report the Te 4d core-yield spech” measured with high resolution. Intense and 
sharp doublets near the 4d core threshold are assigned to the Te 4d core excitons. A newly 
resolved structure near the threshold reveals a dominant source for the earlier discrepancy 
between the splitting energies of the 4d coreyield and 4d core-level photoemission spectra. 

cha 

UPS chamber IPES chamber preparation chamber 
Figure 2. A schematic iUusUaIiOD of the apparatus used for ups and PES. 
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2 Experimental details 

The UPS and IPES [I91 spectrometers employed in the present study are schematically shown 
in figure 2. The UPS spectrometer connected with the PES apparatus consists of a He 
discharge lamp and a double-stage cylindrical-mirror analyser. The energy resolution was 
set to be 0.2 eV. The working pressure under the operation of the discharge lamp was 
3 x Ton. The IPES spectrometer contains 
an electron gun of Erdman-Zipf type with a BaO cathode mounted on the symmetry axis 
of an AI mirror coated with an MgFz film to improve the reflectivity. Light emitted from 
the sample is focused onto the first dynode of the photomultiplier after passing through an 
entrance window of SrFz crystal. The acceptance angle of the light is about 0.8~ SI. All 
components are mounted in an ultrahigh-vacuum chamber under the base pressure, below 
5 x lo-'' Torr. The overall energy resolution is 0.56 eV [19]. The energy calibration of the 
UPS and IPES apparatus was experimentally performed using the spectra of polycrystalline 
Au film. The UPS and IPES spectra were connected at the Fermi level, by measuring these 
spectra in situ for the same sample surface. 

Synchrotron-radiation (SR) experiments were performed on the beamline 2 at the Institute 
for Solid State Physics, University of Tokyo (SRLISSP). A combination of a modified 
Rowland-type monochromator and a double-stage cylindrical-mirror analyser was used to 
obtain angle-integrated photoemission spectra of core levels and valence bands as well as 
constant-initial-state (CIS) spectra. The Te 4d core-absorption spectra were measured by 
total-yield mode. The CIS and total-yield spectra were normalized to the monochromator 
output. The resolution of the monochromator was set to be 0.1 eV at 50 eV. 

All energies of the core-level, valence-band and conduction-band spectra were defined 
with respect to the VBM determined by extrapolating the steep leading edge of the highest 
valence-band peak to the baseline. 

Samples used were undoped Te single crystals with a trigonal form. The clean surfaces 
were prepared in situ by scraping with a diamond file for UPS and P E S  measurements, 
and by cleavage for SR measurements. Measurements on surfaces prepared by scraping 
provide sufficiently angle-integrated spectra. The corresponding UPS and IPES spectra can 
be reasonably compared with the total Doss of valence and conduction bands, respectively. 

TOR, though the base pressure was 4 x 

3. Results and discussion 

Figure 3(a) shows valence-band UPS and conduction-band IPES spectra of trigonal Te. The 
UPS spectrum measured at the excitation-photon energy of 21.2 eV and the IPES spectrum 
are connected at the Fermi level of the sample. The SR photoemission spectrum taken at 
70 eV is also shown in figure 3(b) (thick dotted curves) to demonstrate the structure around 
-13 eV. The valence band spectra exhibit structures at -0.8, -1.7, -3.6, -4.6, -10.6 
and -12.8 eV with respect to the VBM, in agreement with the results of earlier UPS [2,3] 
and XPS 12.4-61 measurements. On the other hand, the conduction-band spectrum shows 
prominent structures at 1.4, 2.1 and 2.7 eV, and weak structures at 4.7, 6.1 and 9.5 eV 
above the VBM. 

The solid curves in figure 3(b) exhibit the DOSS of trigonal Te calculated by Joannopoulos 
et al using the empirical pseudopotential method [15]. The energy of the theoretical curves 
is also referred to the VBM. Calculated valence bands in the energy regions from 0 to 
-2.5 eV, from -2.5 to -6 eV, and from -8 to -13 eV are derived from the p lone-pair, 
p-like bonding and s-like states, respectively. Peaks at -3.6 and -4.6 eV have been related 
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Figure 3. (a) Valence-band photoemission and conduction-band inverse-photoemission spectra 
of trigonal Te. The two spectra are connected a the Fermi level. Energies are referred to the 
VBM. Vertical bars mark the Dos features. (b) The calculated DOS of trigonal Te (solid C U N ~ S ;  

1151). The valenceband photoemission spectrum measured 5 70 eV and the conduction-band 
inverse photoemission spec" (thick dotted curves) are also shown for compaison between 
the theory and experiment. 

to interchain and intrachain bonding states, respectively. The amounts of s and d character 
in the p-like bonding states are around 5-10 and I-5% in the wavefunctions, respectively. 
This p-d mixing is enough to change the bond angle from 90" to 104" without including 
a strong s-p admixture [15]. The conduction bands at 0-4 eV and those above 4 eV are 
due to the p-like antibonding and d-like states, respectively, though the DOS spectrum is 
calculated only up to about 6 eV above the VBM. 

One can recognize that the theory describes the valence-band spectrum well. In 
particular, with respect to the relative energy positions of DOS peaks, there appears an 
excellent agreement between the experiment and theory. To facilitate the comparison with 
the xps spectrum, the theoretical DOS was previously convoluted with an energy-dependent 
broadening function (1.2 eV for the s-like bands and 0.7 eV for the remaining bands). 
Then, the experimental spectrum was placed to make the peak positions match those of the 
theoretical ws spectrum [5,15]. In the present study, however, one notices that all peaks 
in the theoretical DOS are reproduced shallower in energy than those in the experimental 
spectrum. In addition, the theoretical widths of the p-like bonding and s-like bands are 
narrower than those in the experimental spectrum. Moreover, theoretical intensities of the 
p-like bonding bands are almost equal to those of the lonepair bands, in contrast to the 
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experimental spectrum. 
Although the calculation has been performed with no direct information on the 

experimental DOS of conduction bands, the theoretical curve rcpresents fairly well the 
features of the conduction-band spectrum, including the relative intensities between the p 
like antibonding and d-like bands. The relative energy positions of peaks in the theoretical 
DOS are in good agreement with those in the PES spectrum. The DOS peaks except for that 
at 4.7 eV are, however, reproduced on the lower-energy side. In addition, the theoretical 
width of the plike antibonding bands is fairly narrow beyond the experimental resolution 
of the IPES spectrum. 

From a comparison between the experimental and theoretical results mentioned above, 
we point out that the centre-of-mass energy of the p-like bonding and s-like bands should 
be placed at energies deeper by about 0.4 and 0.8 eV with respect to the VBM, respectively. 
Then, the bonding-antibonding splitting energy of the p-like bands should be also increased 
by about 1 eV. An increase of the coupling strength between the hybrid p-like orbitals on 
different atoms would increase the splitting energy and provide an increase of widths of the 
p- l ie  bonding and antibonding bands. 

Theoretical intensities of the p-like bonding bands, almost equal to those of the p lone- 
pair bands, may be also reduced by the increase of the coupling between the p-like orbitals, 
mainly due to the resulting increase of the band width. Weak intensities of the p-like bonding 
bands compared to those of the p lone-pair bands in both the UPS [2,3] and XPS [ 2 , 4 6 ]  
spectra suggest that the experimental results are independent of the excitation-photon energy 
and are intrinsic to the DOS features. 

Relative intensities of theoretical Dos peaks in the p lone-pair bands are significantly 
different from those in the experimental spectrum. Such a discrepancy would be improved 
by fine adjustments of the nearest-neighbour and the second-nearest-neighbour interactions. 

Reflecting the ratio of interchain to intrachain atomic distance, 1.31, the spectral shape 
of the d i k e  bands in the theoretical DOS is similar to a superposition of DOSS for a 
one-dimensional chain and a three-dimensional simple cubic lattice [15]. In addition, 
the bonding-antibonding splitting energy of the s-like bands is in good agreement with 
the experimental result. The width of the s-like bands is, however, narrower by 3 4  eV 
compared to the experimental DOS spectrum. A correction of the coupling strength between 
the neighbouring s orbitals is thus required to increase the dispersion of the s-like bands. 

Next, we move to discussions of the Te 4d core-absorption spectrum. The total-yield 
spectrum is empirically known to be representative of the absorption spectrum in the core- 
excitation region. Figure 4 shows the 4d core-absorption spectrum of trigonal Te for E I c 
[ZO] (dotted curve). In the figure, E stands for the polarization vector of the light, and the 
vertical bar represents the energy position of the Te 4d core-absorption threshold (40.83 eV) 
estimated from the sum of the band-gap energy (0.33 eV) and the Te 4d corelevel energy 
with respect to the VBM. The energies derived from the core-level photoemission spectra 
are -40.50 and -41.95 eV for the 4d5p and 4d3,z core levels, respectively, and are in 
agreement with the results of Shevchik and co-workers [2]. 

One notices an intense and sharp doublet structure in the energy region from 40 to 43 eV 
and weak structures above 43 eV. To evaluate accurately the energy positions of structures 
in the 3 9 4 4  eV region, we have calculated the second energy derivatives of the total-yield 
spectrum, as also shown in figure 4. We find that three structures are clearly resolved as 
negative peaks at 40.84 (A), 41.04 (B) and 42.30 eV (A'). The splitting energy between A 
and A' is almost equal to the spin-rbit splitting energy of Te 4d core levels (1.45 eV). In 
addition, the relative intensity of the doublet A-A' in the total-yield spectrum is close to 
the 6 4  statistical weight of the initial Te 4d5,~ and 4d312 core states. Thus, we classify the 
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Figure 4. The 4d core-yield specmm of trigonal Te for E 1 c Second energy derivatives of 
the core-yield spectrum resolve the strucnues A, B and A' as negative peaks. The vertical bar 
at 40.83 eV represents the 4d core-absorption threshold. The solid curve ( a t  b) represenls a 
s p e c "  cansrmcted by D superposition of two experimental DOS curdes (a) and (b) weighted 
in the ratio of 6 4  and shined by 1.45 eV. The threshold of the curve (a + b) is adjusted to the 
4d core-absorption threshold. 

structures as spin-orbit doublets by taking the spin-orbit splitting energy of the Te 4d core 
levels into account. As concerns the spin-orbit partner of the structure B, we assume that 
this structure (B') overlaps with the steep drop on the higher-energy side of  the structure 
A'. 

The solid curve (a+b) in figure 4 exhibits a DOS spectrum constructed by a superposition 
of two experimental DOS curves (a) and @), weighted in the ratio of 6:4 and shifted by 
1.45 eV according to the 4d core-level splitting energy. The threshold of the curve (a + b) 
is adjusted to 40.83 eV. One notices that the initial rise and threshold of the 4d core-yield 
spectrum are significantly enhanced in comparison with the DOS spectrum. In the energy 
region above 43 eV, however, there appears a fairIy good agreement between the 4d core- 
yield spechum and the constructed Dos of conduction bands with respect to the shape and 
positions of maxima. 

Most transitions to the p-like conduction bands are dipole allowed throughout the 
Brillouin zone as a result of the highly localized character of the initial 4d core states. 
The assumption of constant average ma!xix elements is, however, clearly implausible from 
comparison between the Te 4d core-yield and DOS spectra in figure 4. We believe that the 
A-A' and B-(B') doublets at the threshold are enhanced as a result of the formation of 
Te 4d core excitons with a comparatively long lifetime. Such an enhancement due to an 
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electron-core-hole interaction has been reported also for Si [21], black P [22] and GeS, 
GeSe, SnS and SnSe [a]. Transitions from the 4d core states to the conduction bands 
primarily derived from the Te 5p states are dipole-allowed intra-atomic transitions with a 
strong oscillator strength. The highly anisotropic conduction bands as well as tbe central- 
ceU part of the d corehole potential would make the excitation more localized and increase 
the electron-core-hole coupling [23]. 

The CIS spectrum for the initial-state energy of -1.7 eV exhibited a prominent resonance 
at "a of the corresponding coreabsorption spectrum [24]. The amplitude of the 
resonance was about 50% of the background intensity. This also supports the formation 
of Te 4d core excitons with a fairly localized nature, since the resonance is assumed to 
originate mainly from an interference between the direct recombination process of the core 
excitons and the direct excitation process of the valence electrons [24,25]. 

The relative intensity and the splitting energy of the A-A' doublet are very close to the 
statistical weight of the initial 4d core states and to their splitting energy, respectively. This 
can be understood as a result of a large spin-orbit splitting energy of 1.45 eV, though a 
sizeable electron-corehole exchange energy [26] is expected from the characteristic feature 
of the intense and sharp doublet. 

Judging from comparison of the 4d core-yield spectrum with the DOS curves (a), (b) 
and (a + b), broad structures in the 4 3 4 4  eV and 44-45.5 eV regions are attributed to 
the final states with p-like antibonding character, while features above 45.5 eV are related 
to the d-like character. An absence of intense and sharp peak structures suggests that the 
core-excitation spectrum roughly maps the DOS of conduction bands. We assume that this 
i s  the reason why the curve (a+ b) describes the spectral features above 43 eV well. 

Finally, the absorption spectrum of an evaporated film of crystalline Te has been 
measured in the Te 4d coreexcitation region at room temperature [7]. The specmm 
exhibited prominent peaks at 40.95 and 42.30 eV and weak structures on the higher-energy 
side associated with transitions from the 4d core levels to conduction bands. These features 
were compared with the DOS of conduction bands and with the calculated multiplet splitting 
of the 4d95p5 configuration of atomic Te. The discrepancy between the splitting energies 
of the prominent doublet at 40.95 and 42.30 eV (1.35 eV) and the 4d core levels (1.47 eV) 
was not explained. In the light of the present results, such a discrepancy is likely to be due 
to unresolved A and B structures. 
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